

<u> Computer Science Department – Curriculum Intent</u>

	KS3 Curriculum Intent				
	Head of Department: Mr S Verma				
	Year 7	Year 8	Year 9		
Overview	 Induction to IT Suites:-Usernames/Passwords, email, Office 365, SMHW 1. Introduction to coding through 'Kodu' 2. Microbit Programming and Game Development 3. Introduction to Python 4. Creating Apps via 'App Shed' 5. Games programming in Scratch 	 Graphic Design using Adobe Photoshop HTML & Website Development/Games Programming in Scratch Continuation with Python and 'While Loops/Searching' Scratch and 'Edbot'/Cyberstart Binary Data Representation 	 Introduction to Spreadsheets (Graphs, Formulae & Macros) Code Combat Python Next Steps (Lists and Procedures) Code 4 life Python and 'Edbot' Cyber security (NCCE) Cyberstart 		
Autumn Term	IT Induction- 3 lessons on introducing students to the IT systems at UGS. Usernames/Password, Email, Office 365 & SMHW Introduction to coding through Kodu & Game development Hour of Code - (Brief introduction to how the Interactive/Script mode works and a basic program that we work through eg name calculator – to go through Lessons 1-3 from Intro to Python Presentations)	Graphic Design using Adobe Photoshop - Staying safe online campaign Continuation with Python and 'While Loops/Searching' – using Pygame with Replit Python with Turtle and Tkinter/Pygame to go through shapes and game development	Python – next steps (Use Tkinter and different GUi's) and the use of Algorithms/Binary Code 4 life/Code Combat- students to complete the introduction levels and use elements of Python to problem solve		
Spring Term	Microbits – Introduction to Physical programming using the BBC microbits/Edbot Introduction to Python & Replit (Searching & sorting algorithms)	Edbot programming using Scratch/Python HTML & Website Development (Development of their webpage/site) – HTML & Javascript	Gamemaker – introduction to game making and introduction to Yoyo games Gamemaker. Students to complete the 'Tank' game and create it and then create their own game using the skills that have been developed. Cyber security – Theory module following the NCCE module and attempting Cyberstart module		
Summer Term	App Shed- Create an app for Andriod and iOS. Games programming in Scratch & Python using GUI's such as Pygame	Computer crime & Cyber security Python – Use Python challenges and possibly look at RPG and Minecraft challenge. Binary Data – Understand how computers communicate using Binary. Be able to do basic binary arithmetic	Turing Lab- Students to compile and complete logical thinking module & Chatbot/Smart cities module. Speadsheets – Intro to using Excel, analysing data and creating Graphs Edbot/Robomaster – Introduction to robotics and programming		

<u> Computer Science Department – Curriculum Intent</u>

	Overview of KS4 Curriculum				
	Subject: GCSE Computer Science Exam Board: OCR				
	Year 10	Year 11			
Autumn Term	Unit 1 - Computer systems:- 1.1.1 Architecture of the CPU 1.1.2 CPU performance 1.1.3 Embedded systems Introduction to Python and using Tkinter/Pygame - Students to use 'Learning Python' and work through the resources. Unit 6 - Computational thinking, Algorithms & Programming:- 2.1.1 Computational thinking 2.1.2 Designing, creating and refining algorithms	Unit 4 - Network security & systems software:- 1.4.1 Threats to computer systems and networks 1.4.2 Identifying and preventing vulnerabilities 1.5.1 Operating systems 1.5.2 Utility Software Python programming with an attempt on a Python project (Former NEA project to be used as well as Perse coding team challenge)			
Spring Term	 2.1.3 Searching and sorting algorithms Unit 2 – Data Representation:- 1.2.1 Primary Storage 1.2.2 Secondary Storage 1.2.3 Units 1.2.4 Data Storage 1.2.5 Compression Python programming and regular challenges – consisting of problem solving and using GUI's. 	Unit 8 – Logic & Languages: - 2.3.1 Defensive Design 2.3.2 Testing 2.4.1 Boolean Logic 2.5.1 Languages 2.5.2 IDE Unit 5 – Ethical, legal, cultural and environmental impacts of digital tech:- 1.6.1 Computer systems in the modern world 1.6.2 Ethical, Cultural & environmental issues 1.6.3 Legislation & Privacy			
Summer Term	Unit 3 – Computer Network & Security Systems:- 1.3.1 Networks & Topologies 1.3.2 Wired & Wireless networks, protocols and layers Unit 7 – Programming – in preparation for Year 11 content:- 2.2.1 Programming Fundamentals 2.2.2 Data Types 2.2.3 Additional programming techniques	Revision and Exam Practise – revisit Unit 7 & 2 Past paper packs to attempt along with recalling earlier units from Year 10.			

<u> Computer Science Department – Curriculum Intent</u>

	Overview of KS5 Curriculum				
	Subject: A Level Computer Science Exam Board: OCR				
	Year 12		Year 13		
	Teacher A	Teacher B	Teacher A	Teacher B	
	Unit 1 – Components of a computer:-	Unit 6 – Data Types:-	Unit 4 – Exchanging data:-	Unit 8 – Boolean Algebra:-	
	1.1.1 Structure and function of the	1.4.1 Data Types	1.3.2 Databases	1.4.3 Boolean Algebra	
	processor -	a) Primitive data types, integer, real/	a) Relational database, flat	a) Define problems using Boolean	
	(a)The Arithmetic and Logic Unit; ALU,	floating point, character, string and	file, primary key, foreign	logic. See appendix 5d.	
	Control Unit and Registers (Program	Boolean.	key, secondary key, entity	b) Manipulate Boolean expressions,	
	Counter; PC, Accumulator; ACC, Memory	b) Represent positive integers in	relationship modeling,	including the use of Karnaugh maps to	
	Address Register; MAR, Memory Data	binary.	normalisation and indexing. See	simplify Boolean expressions.	
	Register; MDR, Current Instruction Register;	c) Use of sign and magnitude and	appendix 5g.	c) Use the following rules to derive or	
	CIR). Buses: data, address and control: how	two's complement to represent	b) Methods of capturing, selecting,	simplify statements in Boolean	
	this relates to assembly language programs.	negative numbers in binary.	managing and exchanging	algebra: De Morgan's Laws,	
	(b) The Fetch-Decode-Execute Cycle;	d) Addition and subtraction of binary	data.	distribution, association,	
	including its effects on registers.	integers.	c) Normalisation to 3NF.	commutation, double negation.	
	(c) The factors affecting the performance of	e) Represent positive integers in	d) SQL - Interpret and modify. See	d) Using logic gate diagrams and truth	
	the CPU: clock speed, number of cores,	hexadecimal.	appendix 5d.	tables. See appendix 5d.	
E	cache. (d) The use of pipelining in a	f) Convert positive integers between	e) Referential Integrity.	e) The logic associated with D type flip	
[er	processor to improve efficiency. (e) Von	Binary Hexadecimal and denary.	f) Transaction processing, ACID	flops, half and full adders.	
	Neumann, Harvard and contemporary	g) Representation and normalisation	(Atomicity, Consistency,		
- un	processor architecture.	of floating point numbers in binary.	Isolation, Durability), record		
Aut		h) Floating point arithmetic, positive	locking and redundancy.		
	1.1.2 Types of processor -	and negative numbers, addition and			
	(a) The differences between and uses of	subtraction.			
	CISC and RISC processors.	i) Bitwise manipulation and masks:	Unit 10 – Computational thinking:-		
	(b) GPUs and their uses (including those not	shifts, combining with AND, OR, and	2.2.2 Computational methods-	Unit 9 Legal, Moral & ethical issues:-	
	related to graphics).	XOR.	a) Features that make a	1.5.2 Ethical, moral and cultural issues-	
	(c) Multicore and Parallel systems.	j) How character sets (ASCII and	problem solvable by	a) The individual (moral), social (ethical)	
		UNICODE) are used to represent text	computational methods.	and	
	1.1.3 Input, output and storage -		b) Problem Recognition.	cultural opportunities and risks of digital	
	(a) How different input, output and storage	Programming- Intro to C# and Unity	c) Problem Decomposition.	technology:	
	devices can be applied to the solution of		d) Use of divide and conquer.	Computers in the workforce	
	different problems.	Students are introcuded to C# and Unity	e) Use of abstraction.	Automated decision making	
	(b) The uses of magnetic, flash and optical	and follow the tutorials issues by the	t) Learners should apply their	Artificial intelligence	
	storage devices.	teacher as well as using the online	knowledge of:	Environmental effects	
	(c) RAM and ROM.	learning hub.	backtracking	Censorship and the Internet	
	(d) Virtual storage.		• data mining	Monitor behavior	

<u>Computer Science Department – Curriculum Intent</u>

	heuristics	 Analyse personal information
	 performance modelling 	 Piracy and offensive communications
	• pipelining	 Layout, colour paradigms and character
	 visualisation to solve problems 	sets.
Unit 2 – Software		NEA Project:-
1.2.1 Operating Systems-		Analysis & Design sections to be
a) The need for function and nurnose of		completed
operating systems		Development of the solution to have
b) Memory management (naging		started and aiming to complete by
segmentation and virtual memory)		January
c) Interrupts the role of interrupts and		January.
Interrupts, the role of interrupts and		
within the fetch decode execute		
cycle.		
a) Scheduling: round robin, first come		
first served, multi-level feedback		
queues, shortest job first and shortest		
remaining time.		
e) Distributed, embedded, multi-tasking,		
multi-user and real time operating		
systems.		
f) BIOS.		
g) Device drivers.		
h) Virtual machines, any instance		
where software is used to take on		
the function of a machine, including		
executing intermediate code or		
running an operating system within		
Another.		
1.2.2 Applications Generation-		
a) The nature of applications, justifying		
suitable applications for a specific		
purpose.		
b) Utilities.		
c) Open source vs closed source.		
d) Translators: interpreters, compilers		
and assemblers.		
e) Stages of compilation (Lexical		

Computer Science Department – Curriculum Intent

	 analysis, Syntax analysis, Code generation and Optimisation). f) Linkers and loaders and use of libraries 1.2.3 Software Development- a) The nature of applications, justifying suitable applications for a specific purpose. b) Utilities. c) Open source vs closed source. d) Translators: interpreters, compilers and assemblers. e) Stages of compilation (Lexical analysis, Syntax analysis, Code generation and Optimisation). f) Linkers and loaders and use of Libraries 			
opring rerit	 Unit 3 – Software Development: 1.2.4 Types of Programming Language- a) Need for and characteristics of a variety of programming paradigms. b) Procedural languages. c) Assembly language (including following and writing simple programs with the Little Man Computer instruction set). See appendix 5d. d) Modes of addressing memory (immediate, direct, indirect and indexed). e) Object-oriented languages with an understanding of classes, objects, methods, attributes, inheritance, encapsulation and polymorphism. 	 Unit 7 – Data Structures:- 1.4.2 Data Structures a) Arrays (of up to 3 dimensions), records, lists, tuples. b) The following structures to store data: linked-list, graph (directed and undirected), stack, queue, tree, binary search tree, hash table. c) How to create, traverse, add data to and remove data from the data structures mentioned above. 	 Unit 11 – Programming techniques:- 2.2.1 Programming techniques a) Programming constructs: sequence, iteration, branching. b) Recursion, how it can be used and compares to an iterative approach. c) Global and local variables. d) Modularity, functions and procedures, parameter passing by value and by reference. e) Use of an IDE to develop/ debug a program. f) Use of object oriented techniques 	NEA Project : – Development and Testing to aid development documentation to be marked and completed during this term & moderation finalised.

<u>Computer Science Department – Curriculum Intent</u>

		Unit 12 – Algorithms:-	Revision – recap of earlier modules for	
		2.3.1 Algorithms-	refreshing knowledge.	
		a) Analysis and design of algorithms		
		for a given situation.		
		b) The suitability of different		
		algorithms for a given task and data		
		set, in terms of execution time and		
		space		
		c) Measures and methods to		
		determine the efficiency of different		
		algorithms Big O notation		
		(Constant linear polynomial		
		exponential and logarithmic		
		complexity)		
		d) Comparison of the complexity of		
		algorithms		
		e) Algorithms for the main data		
		structures (Stacks queues trees		
		linked lists denth-first (nost-order)		
		and breadth-first traversal of trees)		
		f) Standard algorithms (Bubble sort		
		insertion sort marga sort quick sort		
		Dijkstra's shortest nath algorithm A*		
		algorithm binary search and linear		
		search)		
	Unit 5 - Networks & Web Technologies:-	NEA Project:-	Revision and recan of earlier modules from	Revision and recan of earlier modules
	1 3 3 Networks-	<u>NEATIOJECC.</u>	Year 12	from Year 12
	a) Characteristics of networks and	Intro to the project and start on		
	the importance of protocols and	Analysis section. Go through how to	Past papers to be completed	
	standards.	document and create the project.	· · · · · · · · · · · · · · · · · · ·	
ε	b) The internet structure:			
Ter	• The TCP/IP Stack.	Students should have brainstormed		
e.	• DNS	suitable ideas and gone through the		
E	Protocol layering.	'Project Guidance' to ensure that their		
Sur	• LANs and WANs.	project is suitable.		
	 Packet and circuit switching. 			
	c) Network security and threats,			
	use of firewalls, proxies and			
	encryption.			
	d) Network hardware.			

Computer Science Department – Curriculum Intent

1.3.4 Web Technologies- a) HTML, CSS and JavaScript. See appendix 5d. b) Search engine indexing.	e) Client-server and peer to peer.		
c) PageRank algorithm. d) Server and client side processing.	 1.3.4 Web Technologies- a) HTML, CSS and JavaScript. See appendix 5d. b) Search engine indexing. c) PageRank algorithm. d) Server and client side processing. 		

Curriculum Rationale:

It is the true belief of our Computer Science department that Computer Science empowers children's thinking for logic and problem solving which is one of the major skills needed in the modern job market and at University. With that in mind we have created a Computer Science curriculum that encompasses problem solving and real life programming with languages that are used in industry eg Python and C#. We support the theory with physical programming of edbots, microbits and dji drones that we have in the department. The aims of this curriculum are to enable learners to develop:

• An understanding and ability to apply the fundamental principles and concepts of computer science, including: abstraction, decomposition, logic, algorithms and data representation

- The ability to analyse problems in computational terms through practical experience of solving such problems, including writing programs to do so
- The capacity to think creatively, innovatively, analytically, logically and critically
- The capacity to see relationships between different aspects of computer science
- Mathematical skills.

This curriculum is specified in detail to ensure that knowledge is remembered (not merely encountered) and built upon, enabling cognitive retrieval through sequential mapping of key concepts and synopsis. By grounding computational thinking skills in relevant and enriching knowledge, students become scholarly and confident demonstrating deeper understanding.

At KS3 (Years 7-9), students work hard to rapidly develop programming skills and knowledge. With a number of students beginning a programming language for the first time, we are delighted that our students make excellent progress and continue onto GCSE computer science as well as using the skills learnt to be used in other subjects eg Using software packages such as Office, Adobe and Python.

At KS4-5 students follow the OCR syllabus for Computer Science and this entails theory modules as well as encouraging students to develop their understanding and application of the core concepts in computer science. Students analyse problems in computational terms and devise creative solutions by designing, writing, testing and evaluating programs.

<u>**Computer Science Department – Curriculum Intent**</u>

Careers:

The ability to program in Python, C# and HTML which is taught at KS3-5 can lead to the following careers if those skills are pursued. Analytical skills such as debugging programs and recognising how to fix them is a skill that is valued amongst employers, as well as the below career fields in Computer Science.

Application analystApplications developerCyber security analystData analystData base administratorForensic computer analystGame designerGames developerIT consultantSoftware engineerSystems analystUX designerWeb designerWeb developer