Transition work - Mark Scheme

Activity 1 – Structure and bonding

Q1.

		1	[10]
	each carbon / atom forms four bonds	•	
	(of atoms joined by) covalent bonds	1	
(h)	giant structure allow lattice	1	
(g)	3	1	
(f)	spherical	1	
(e)	only intermolecular forces are weak	1	
(d)	C_2F_6	1	
(c)	6	1	
(b)	7	1	
(a)	6	1	

Q2.				
(a)	Level 3: A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.			
	Level 1: Relevant points are made. They are not logically linked.	1-2		
	No relevant content	0		
	Indicative content			
	relevant points			
	silver is the best electrical conductor			
	aluminium is the least densealuminium is the least expensive			
	 copper is a better conductor than aluminium or 			
	 copper is almost as good a conductor as silver copper is much less expensive than silver 			
	 overhead power cables need a low density metal wiring in homes needs to be affordable printed circuit boards only require small amounts of material 			
	 judgements use aluminium for overhead wires because of aluminium's low density and/or lower cost 			
	 use copper for domestic wiring because copper is a very good conductor and not too expensive 			
	 use silver only for small uses such as circuit boards due to high cost 			
	 copper is a good compromise between electrical conductivity and cost 			
(b)	(metals have) delocalised electrons	1		
	the electrons carry (electrical) charge ignore current / electricity for charge	1		
	the electrons move through the structure / metal ignore throughout for through	1		
(c)	in alloys different sized atoms distort the layers / structure	1		

(so) the movement of (delocalised) electrons is restricted

[9]

1

Q3.

(a)	prop	ane is a small molecule	
		allow propane is a simple molecule	1
	(so)	the forces between molecules are weak	
	(so)	the intermolecular forces are weak	
	()	do not accept covalent bonds are weak	1
	(whi	ch) require little energy to overcome	
		do not accept answers in terms of breaking covalent bonds	1
04			
(a)	M1	$C_n H_{2n+2}$	1
	M2	14.0 <i>n</i> + 2.0 or 14n + 2	
		or 2(7.0n + 1.0) or 2.0(7n + 1) or 2(7n + 1)	1
(b)	M1	nonane has stronger / greater / more <u>van der Waals' forces betwee</u> molecules	<u>en</u>
		or converse arguments for 2,4-dimethylbutane having lower boiling point	
		question refers to nonane if not expressly stated by candidate	
		intermolecular forces = forces between molecules	
		M1 ignore abbreviations vdW and/or imf	1
	M2	nonane molecules pack closer together / more (surface) contact	
		M2 ignore reference to surface area alone	
		CE=0 reference to breaking (covalent) bonds /	
			1
Q5.			
(a)	Stro	ngest: SrCl ₂ > ICl > Br	

If wrong can award 1 for one in the correct 'position'

2

SrCl₂ strong ionic bonds / (strong electrostatic attraction between opposite

ions)

Lattice so many strong bonds to overcome

Both ICI and Br₂ have intermolecular forces:

ICl has (dipole-dipole) weak intermolecular forces between molecules – weaker than ionic bonds, but stronger than those in $\ensuremath{\text{Br}}_2$

 Br_2 has (van der Waals) **very** weak intermolecular forces between molecules – much weaker than those in ICI.

Accept answers related to London / dispersion / induced dipole forces

1

1

1

Activity 2 – Quantitative chemistry

Question	Answer
What is the equation that links mass, molecular mass and moles?	$mass = moles \times M_R$ $moles = \frac{mass}{M_R}$ $M_R = \frac{mass}{moles}$
What is the equation that links mass, concentration and volume?	$mass = concentration \times volume$ $concentration = \frac{mass}{volume}$ $volume = \frac{mass}{concentration}$
What is the equation that links moles, volume and concentration?	$moles = concentration \times volume$ $concentration = \frac{moles}{volume}$ $volume = \frac{moles}{concentration}$
What is Avogadro's number? What does it mean?	6.022x10 ²³ The number of particles (atoms, molecules, ions) in one mole of a substance.
What is the equation for percentage yield?	% yield = $\frac{actual mass}{theoretical mass} \times 100$
What is the equation for atom economy?	% atom economy = $\frac{M_R \text{ of desired product}}{\text{total } M_R \text{ of all reactants}} \times 100$
What is the fundamental difference between atom economy and percentage yield?	 % yield = how much product you get in relation to reactants – mass or moles. Atom economy = measure of the efficiency of a reaction – determines how much waste is produced.

What is the equation used in	$\Delta H = reactants - products$
a bond energy calculation?	$\Delta H = bonds \ broken - bonds \ formed$

Question	Answer (Show working)
1m into mm	1 x 100 x 10 = 1000
0.5dm ³ into cm ³	0.5 x 1000 = 500
1.72 tonnes into g	$1.72 \text{ x } 1 \text{ million} = 1.72 \text{ x} 10^{6}$
2034000cm ³ into m ³	$2034000 \div 10^6 = 2.034$
374 K into °c	374 – 273 = 101
134mg into g	134 ÷ 1000 = 0.134
-12.3°c into K	-12.3 + 273 = 261.7
101kPa into Pa	101 x 1000 = 101000

Question	Answer
Round 2748493 to 3 significant figures	2750000
Round 0.3748596 to 3 significant figures	0.375
Round 0.00003465 to 3 significant figures	0.0000347
Round 35.65545 to 2 decimal places	35.66
Round 0.000094 to 1 decimal place	0.00009
Give ⅔ as a decimal to 2 significant figures	0.38
Give 7⁄8 as a decimal to 2 decimal places	0.88
Give the following values to the same	0.012, 0.013, 0.015
appropriate precision:	Appropriate precision means to the
0.012, 0.0134, 0.00145	accuracy of the lowest significant figures provided. 0.012 is to 2sf, so all numbers should be rounded to match.

Q1.

(a) $\frac{(\text{percentage =})}{\frac{63.5}{159.5} \times 100}$

	= 39.81191	(%)	1
	= 39.8 %	allow an answer correctly rounded to 3 significant figures from an incorrect calculation which uses both the values in the question	1
(b)	(conversior	n 25 cm³ =) 0.025 dm³	1
	(concentra	tion =) $\frac{6.75}{0.025}$ (g/dm³) allow correct use of an incorrectly determined or unconverted volume	1
	= 270 (g/dr	n³)	1
Q2.			
(a)	(percentage	e atom economy =) $\frac{48}{80} \times 100$	1
	= 60 (%)		1
(b)	(conversior	ו)	
	(800 cm ³ =	800 1000 =) 0.8	1
	(dm³)	allow correct use of incorrect / no volume conversion	1
	(mass =) 0.8 × 258 (g)		
	= 206.4 (g)		
	= 206 (g)	allow an answer correctly calculated to 3 significant figures from an incorrect calculation which uses the values in the question	1

(c)

$$92.8 = \frac{\text{mass produced}}{12.5} \times 100$$

allow mass produced =
% yield $\times \frac{\text{max theoretical mass}}{100}$

(mass produced) =
$$\frac{92.8}{100} \times 12.5$$

(a)
$$(3 \times M_r H_2 O = 3 \times (2 + 16) =) 54$$

(*A*_r **R** = 150 – 54 =) 96 ignore units

alternative approach: $(M_r RO_3 = 150 - 6 =) 144 (1)$

$$(A_r \mathbf{R} = 144 - (3 \times 16) =) 96 (1)$$

ignore units

Q4.

(a)	$2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$	1
(b)	1 Fe ²⁺ : 2 Fe ³⁺ : 4 O ²⁻	1
(c)	(<i>M</i> _r Fe ₃ O ₄ =) 232	1
	(% Fe =) $\frac{3 \times 56}{232} \times 100$ $allow \frac{168}{232} \times 100$ $allow correct use of an incorrectly determined M_r$ $using the values of A_r given in the question$	1
	= 72.4 (%) allow 72.41379 correctly rounded to at least 2 significant figures	1
(d)	(40.0 kg =) 40 000 (g) a maximum of 4 marks can be awarded for a method which determines and uses the volume of iron oxide as a gas	1
	(moles $Fe_2O_3 = \frac{40\ 000}{160}$ =) 250 allow correct use of an incorrectly converted or unconverted mass	1
	(moles $CO_2 = 250 \times \frac{3}{2} =$) 375 allow correct use of an incorrectly determined number of moles of Fe_2O_3	1
	(volume of CO ₂ =) 375 × 24 allow correct use of an incorrectly determined number of moles of CO ₂	1
	= 9000 (dm³)	1

Q5.

```
(a)
      (volume = 39 - 25 =) 14 (cm^3)
                                                                                         1
      (14 \text{ cm}^3 =) 0.014 \text{ (dm}^3)
                   allow correct use of an incorrectly determined
                   volume
                                                                                         1
      (moles of hydrogen =)
       0.014
        24
                   allow correct use of an incorrectly determined
                   volume
                   allow correct use of an incorrect / no conversion of
                   volume
                                                                                         1
      = 5.8 x 10<sup>-4</sup> (mol)
                   allow 5.833333 x 10<sup>-4</sup> correctly rounded to at least
                   2 significant figures
                   allow 0.00058 (mol)
                                                                                         1
      alternative approach 1:
      (24 dm<sup>3</sup> =) 24 000 (cm<sup>3</sup>) (1)
      (volume = 39 - 25 =)
      14 (cm^3) (1)
      (moles of hydrogen =)
        14
      24000 (1)
                   allow correct use of an incorrectly determined
                   volume
                   allow correct use of an incorrect / no conversion of
                   volume
      = 5.8 \times 10^{-4} \pmod{1}
                   allow 5.833333 x 10<sup>-4</sup> correctly rounded to at least
                   2 significant figures
                   allow 0.00058 (mol)
```

alternative approach 2:

(24 dm³ =) 24 000 (cm³) (1)

(moles of hydrogen at 100 s =

 $\frac{39}{24000}$ =) 0.001625

allow correct use of an incorrect / no conversion of volume

and

(moles of hydrogen at 40 s =

$$\frac{25}{24000}$$
 =) 0.00104 (1)

(moles 100 s – moles 40 s =) 0.001625 – 0.00104 (1) allow correct use of an incorrectly determined number of moles

= 5.8 x 10⁻⁴ (mol) (1) allow 5.833333 x 10⁻⁴ correctly rounded to at least 2 significant figures allow 0.00058 (mol)

alternative approach 3:

(39 cm³ =) 0.039 (dm³) and (25 cm³ =) 0.025 (dm³) (1)

(moles of hydrogen at 100 s = $\frac{0.039}{24}$ =) 0.001625

allow correct use of an incorrect / no conversion of volume

and

(moles of hydrogen at 40 s = $\frac{0.025}{24} =) 0.00104 (1)$ (moles 100 s - moles 40 s =) 0.001625 - 0.00104 (1) allow correct use of an incorrectly determined number of moles $= 5.8 \times 10^{-4} (mol) (1)$ allow 5.833333 x 10⁻⁴ correctly rounded to at least 2 significant figures

allow 0.00056 (mol)	allow	0.00058	(mol)
---------------------	-------	---------	-------

(b)	tangent drawn at 45 s	1
	correct values for <i>y</i> step and <i>x</i> step from tangent allow correct use of an incorrectly drawn tangent allow a tolerance of ± ½ a small square for each coordinate	1
	(rate =) value for y step value for x step allow correct use of incorrectly determined value(s) from the tangent for y step and/or x step	1
	correct calculation of rate (mol/s)	1
	rate given in standard form (mol/s) allow a correctly calculated answer in standard form from an incorrect attempt at rate determination	1

1

1

Q6.

(a) (volume of HCl = $\frac{0.0045}{0.15}$) = 0.030 (dm³)

> (conversion 0.030 dm³ =) 30 (cm³) allow correct conversion of an incorrectly determined volume in dm³

Q7.

(a) M1 Abundance of ⁸⁷Sr = X
and Abundance of ⁸⁶Sr = 1 - 0.83 - X
= 0.17 - X
Allow M1 for
Abundance of ⁸⁷Sr = X and Abundance of ⁸⁶Sr = Y if
also states that X + Y = 17
M2 87.73 = (88 × 0.83) + (87 × X) + (86 × (0.17 - X))
87.73 = (88 × 0.83) + (87 × X) + (86 × Y)
87.73 = 73.04 + 87X + 14.62 - 86X
87.73 = 87.66 + X
M3 ⁸⁷Sr = 0.07 = 7 %
M4 Abundance of ⁸⁶Sr = 1 - 0.83 - 0.07 = 0.1 = 10 %
M4 = 17 - M3

4

(b) **M1** Amount of HCl added = 0.200 × 0.040 = 0.00800 mol

M2 Amount of NaOH = 0.100 × 0.02925 = 0.002925 mol

(Amount of HCI = 0.002925 mol)

M3 Amount of HCl reacted with $Mg(OH)_2 = 0.00800 - 0.002925 = 0.005075$ mol

6

M3 = M1 - M2

M4 Amount of Mg(OH)₂ = 0.005075 ÷ 2 = 0.0025375 mol M4 = M3 ÷ 2

M5 Mass of Mg(OH)₂ = 58.3 × 0.0025375 = 0.148 g M5 = M4 × 58.3

M6 % by mass = $\frac{0.148}{0.200} \times 100 = 74.0$ % $M6 = \frac{M5}{0.200} \times 100$

Do not allow M6 if >100%

Activity 3 – Symbol equations

1. $2 H_2 + 1 O_2 \rightarrow 2 H_2O$ 2. 2 Na + 1 $Cl_2 \rightarrow$ 2 NaCl 3. $1 N_2 + 3 H_2 \rightarrow 2 NH_3$ 4. 2 Mg + 1 $O_2 \rightarrow$ 2 MgO 5. $2 \text{AI} + 3 \text{Br}_2 \rightarrow 2 \text{AIBr}_3$ 6. 2 K + 2 H₂O \rightarrow 2 KOH + 1 H₂ 7. 1 Ca + 2 HCl \rightarrow 1 CaCl₂ + 1 H₂ 8. 4 Fe + 3 $O_2 \rightarrow 2 Fe_2O_3$ 9. $1 C_3 H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2 O_2$ 10. 1 Zn + 2 HNO₃ \rightarrow 1 Zn(NO₃)₂ + 1 H₂ 11. 2 NaOH + 1 $H_2SO_4 \rightarrow 1 Na_2SO_4 + 2 H_2O$ 12. 4 NH₃ + 3 O₂ \rightarrow 2 NO + 6 H₂O 13. 2 AI + 6 HCI \rightarrow 2 AICI₃ + 3 H₂ 14. 1 $Pb(NO_3)_2$ + 2 KI \rightarrow 1 PbI_2 + 2 KNO₃ $x = KNO_3$ 15. 1 CH₄ + 4 Cl₂ \rightarrow 1 CCl₄ + 4 HCl 16. 1 Na₂CO₃ + 2 HCl \rightarrow 2 NaCl + 1 H₂O + 1 CO₂ 17. 1 $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O_2$ 18. 2 HNO₃ + 1 Ca(OH)₂ \rightarrow 1 Ca(NO₃)₂ + 2 H₂O 19. 6 FeSO₄ + 1 K₂Cr₂O₇ + 7 H₂SO₄ \rightarrow 3 Fe₂(SO₄)₃ + 1 Cr₂(SO₄)₃ + 1 K₂SO₄ + 7 H₂ $x = H_2O$ 20. 1 C_2H_5OH + 3 $O_2 \rightarrow$ 2 CO_2 + 3 H_2O 21. 1 Cu + 4 HNO₃ \rightarrow 1 Cu(NO₃)₂ + 2 NO₂ + 2 H₂O

$$x = H_2O$$