Transition Task. Chapter 1 - Algebraic Expressions.

Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Instruction - Transition Task

- Aim to complete this booklet independently
- If you need support, use the video/ written solutions provided on the Urmston Grammar website.
- Complete all exam questions at the end of each section and mark them using the mark scheme provided.
- You do not need to do anything with the exercise boxes ->

First few lessons at Urmston Grammar

Lesson 1 - You will hand in your transition work to your teacher and then revise chapters 1, 2 and 3 in preparation for your skills test.
Lesson 2 - You will complete a skills test on chapters 1, 2, and 3
Lesson 3 - You will start new content.

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Diagnostic for Chapter 1 Algebraic Expressions

1 Simplify:
a $4 m^{2} n+5 m n^{2}-2 m^{2} n+m n^{2}-3 m n^{2}$
b $3 x^{2}-5 x+2+3 x^{2}-7 x-12$
\leftarrow GCSE Mathematics
2 Write as a single power of 2 :
a $2^{5} \times 2^{3}$
b $2^{6} \div 2^{2}$
c $\left(2^{3}\right)^{2}$

- GCSE Mathematics
a) $2 m^{2} n+3 m n^{2}$
b) $6 x^{2}-12 x-10$

2 a) 2^{8}
b) 2^{4}
c) 2^{6}

3 Expand:
a $3(x+4)$
b $5(2-3 x)$
c $6(2 x-5 y)$
\& GCSE Mathematics
a) $3 x+12$
b) $20-15 x$
c) $12 x-30 y$

4 Write down the highest common factor of:
a 24 and 16
b $6 x$ and $8 x^{2}$
c $4 x y^{2}$ and $3 x y$
a)

124
116
212
28
38
44
46

$$
H C F=8
$$

b) 200
c) $x=y$

5 Simplify:
a $\frac{10 x}{5}$
b $\frac{20 x}{2}$
c $\frac{40 x}{24}$
a) $2 x$
b) $10 x$
c) $\frac{10}{6} x=\frac{5}{8} x$

Basic Index Laws

$$
\begin{aligned}
& \left(a^{n}\right)^{m}=a^{n \times m}=a^{n m} \| a^{n} \div a^{m}=a^{n-m} \\
& a^{n} \times a^{m}=a^{n+m}
\end{aligned}
$$

Examples

$$
\text { 2. } \begin{aligned}
\text { Simplify } & \left(a^{3}\right)^{2} \times 2 a^{2} \\
& =a^{6} \times 2 a^{2} \\
& =2 a^{8}
\end{aligned}
$$

$$
\text { 2. } \begin{array}{rlr}
\text { simplify }\left(4 x^{3} y\right)^{3} & =4^{3}\left(x^{3}\right)^{3} y^{3} & \text { Att } 4 x^{3} y \times 4 x^{3} y \times 4 x^{3} y \\
& =64 x^{9} y^{3} & 64 x^{9} y^{3}
\end{array}
$$

3. Simplify $2 x^{2}(3+5 x)-\underset{x\left(4-x^{2}\right)}{\overparen{C}}$

$$
\begin{aligned}
& 6 x^{2}+10 x^{3}-4 x+x^{3} \\
= & 11 x^{3}+6 x^{2}-4 x
\end{aligned}
$$

4. Simplify $\frac{x^{3}-2 x}{3 x^{2}}$ (2 methods)

$$
\begin{aligned}
\frac{\mathscr{x}\left(x^{3}-2 x\right.}{3 x^{2}}(2 \text { methods) } \\
3 x^{2}
\end{aligned}=\frac{x^{2}-2}{3 x} \| \begin{aligned}
& \text { Alt } \\
& \frac{x^{3}}{3 x^{2}}-\frac{2 x}{3 x^{2}} . \\
& \frac{x}{3}-\frac{2}{3 x}
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Test Your Understanding:

1. Simplify $\left(\frac{2 a^{5}}{a^{2}}\right)^{2} \times 3 a=\frac{4 a^{10}}{a^{4}} \times 3 a$.

$$
\begin{aligned}
& =\frac{12 a^{41}}{a^{4}} \\
& =12 a^{7}
\end{aligned}
$$

2. Simplify $\frac{2 x+x^{5}}{4 x^{3}}$

$$
\begin{aligned}
& =\frac{x\left(2+x^{4}\right)}{4 x^{3}} \\
& =\frac{2+x^{4}}{4 x^{2}}
\end{aligned}
$$

3. Expand and simplify $2 x\left(3-x^{2}\right)-4 x^{3}(3-x)$

$$
\begin{aligned}
& 6 x-2 x^{3}-12 x^{3}+4 x^{4} \\
= & 4 x^{4}-14 x^{3}+6 x
\end{aligned}
$$

4. Simplify $2^{x} \times 3^{x}$

$$
\begin{aligned}
& 2 \times 2 \times 2 \ldots \times 2 \times 3 \times 3 \times 3 \ldots \times 3 \\
= & 2 \times 3 \times 2 \times 3 \times 2 \times 3 \ldots \times 2 \times 3 \\
= & 6^{x}
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions.

Negative and Fractional Indices

$$
\begin{array}{lll}
a^{-1}=\frac{1}{a} & a^{1 / 2}=\sqrt{a} & a^{b / c}=\sqrt[c]{a^{b}} \\
a^{-b}=\frac{1}{a^{b}} & a^{1 / b}=\sqrt[b]{a} &
\end{array}
$$

1. Prove that $x^{\frac{1}{2}}=\sqrt{x}$

$$
\begin{aligned}
& x^{1 / 2} \times x c^{1 / 2}=x c^{1} \\
& x^{1 / 2}=\sqrt{x}
\end{aligned}
$$

3. Evaluate $32^{\frac{2}{5}}$

$$
\begin{aligned}
5 \sqrt{32}^{2} & =2^{2} \\
& =4
\end{aligned}
$$

2. Evaluate $27^{-\frac{1}{3}}$

$$
\begin{aligned}
27^{-1 / 3} & =\left(\frac{1}{27}\right)^{1 / 3} \\
& =\sqrt[3]{\frac{1}{27}}=\sqrt[3]{2} \\
& =\sqrt[3]{27}
\end{aligned}
$$

4. Simplify $\left(\frac{1}{9} x^{6} y\right)^{\frac{1}{2}}$

$$
\sqrt{\frac{1}{9} x^{6} y}=\frac{1}{3} x^{3} y^{1 / 2}
$$

2. Evaluate $\left(\frac{27}{8}\right)^{-\frac{2}{3}}$

$$
\begin{aligned}
& =\left(\frac{8}{27}\right)^{2 / 3} \\
& =\left(\frac{2}{3}\right)^{2}
\end{aligned}
$$

6. If $b=\frac{1}{9} a^{2}$, determine $3 b^{-2}$ in the form $k a^{n}$ where k, n are constants

$$
\begin{aligned}
& 3\left(\frac{1}{9} a^{2}\right)^{-2} \\
& =3\left(\frac{a^{2}}{9}\right)^{-2} \\
& =3\left(\frac{9}{a^{2}}\right)^{2}
\end{aligned} \begin{aligned}
= & \left.\frac{84}{a^{4}}\right) . \\
& =243 a^{-4}
\end{aligned}
$$

Exercise 1D Page 11

Brackets: Expanding

Example: $(x+1)(x+2)(x+3)$

$$
\begin{aligned}
& \left(x^{2}+2 x+x+2\right)(x+3) \\
& \left(x^{2}+3 x+2\right)(x+3) \\
& x^{3}+3 x^{2}+2 x+3 x^{2}+9 x+6 \\
& x^{3}+6 x^{2}+11 x+6
\end{aligned}
$$

Questions

2. Expand and simplify

$$
\begin{aligned}
& (x+5)(x-2)(x+1) \\
& \left(x^{2}+3 x-10\right)(x+1) \\
& x^{3}+3 x^{2}-10 x+x^{2}+3 x-10 \\
& x^{3}+4 x^{2}-7 x-10
\end{aligned}
$$

2. Expand and simplify:

$$
\begin{aligned}
& 2(x-3)(x-4) \\
& 2\left(x^{2}-7 x+12\right) \\
& 2 x^{2}-14 x+24
\end{aligned}
$$

2. Expand and simplify:

$$
\begin{aligned}
& (2 x-1)^{3} \\
& \left(4 x^{2}-4 x+1\right)(2 x-1) \\
& 8 x^{3}-8 x^{2}+2 x-4 x^{2}+4 x-1 \\
& 8 x^{3}-12 x^{2}+6 x-1
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Brackets: Factorising
Examples: $\quad t-S$

1. $x^{2}-\begin{gathered}A \\ -5 x-14\end{gathered} \times-14$

$$
(x-7)(x+2)
$$

3. $4 x^{2}-9$

$$
(2 x+3)(2 x-3)
$$

$$
\begin{aligned}
& \text { 2. } x^{3}+3 x^{2}+2 x \\
& x\left(x^{2}+3 x+2\right) \\
& x(x+2)(x+1)
\end{aligned}
$$

Test your understanding:
Factorise completely

1. $6 x^{2}+x-2$

$$
(3 x+2)(2 x-1)
$$

3. $x^{4}-1$

$$
\begin{aligned}
& \left(x^{2}-1\right)\left(x^{2}+1\right) \\
& (x-1)(x+1)\left(x^{2}+1\right)
\end{aligned}
$$

(x) $-24+8$
(t) 5 - 3

M A M
2. $2 x^{2}+5 x-12$

$$
(2 x-3)(x+4)
$$

4. $x^{3}-x$

$$
\begin{aligned}
& x\left(x^{2}-1\right) \\
& x(x-1)(x+1)
\end{aligned}
$$

$$
\begin{gathered}
2 \cdot x^{3}-7 x^{2}+12 x \\
x\left(x^{2}-7 x+12\right) \\
x(x-3)(x+4)
\end{gathered}
$$

4. $x^{3}-1$
$(x-1)\left(x^{2}+x+1\right)$.
Tat this stage we do not need to harrow this.

Surds:

$$
\begin{array}{ll}
\sqrt{a} \times \sqrt{b}=\sqrt{a b} & \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \\
2 \times \sqrt{a}=2 \sqrt{a} & \sqrt{a}^{2}=a
\end{array}
$$

Simplify:

$$
\text { 1. } \sqrt{3} \times 2=2 \sqrt{3} \quad \begin{aligned}
2.3 \sqrt{5} \times 2 \sqrt{5} \quad & 6 \times 5 \\
= & 30
\end{aligned}
$$

3. $\sqrt{8}=\sqrt{4} \times \sqrt{2}$

$$
\text { 4. } \begin{aligned}
\sqrt{12}+\sqrt{27} & =\sqrt{4} \times \sqrt{3}+\sqrt{9} \times \sqrt{3} \\
& =2 \times \sqrt{3}+3 \times \sqrt{3} \\
& =5 \sqrt{3}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& (\sqrt{8+1)(\sqrt{2}}-3) \\
= & \sqrt{16}+\sqrt{2}-3 \sqrt{8}-3 \\
= & 4+\sqrt{2}-3(2 \sqrt{2})-3 \\
= & 1+\sqrt{2}-6 \sqrt{2} \\
= & 1-5 \sqrt{2}
\end{aligned}
$$

Rationalising the denominator:
Examples:

$$
\begin{aligned}
& 1 . \frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2} \\
& 2 . \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}=2 \sqrt{3} \\
& 3 . \frac{7}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{7 \sqrt{7}}{7}=\sqrt{7}
\end{aligned}
$$

$$
4 \frac{15}{\sqrt{5}}+\sqrt{5}=\frac{15}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}+\sqrt{5}=\frac{15 \sqrt{5}}{5}+\sqrt{5}
$$

Test your understanding:

$$
3 \sqrt{5}+\sqrt{5}
$$

$$
\begin{aligned}
& \frac{12}{\sqrt{3}}=\frac{12 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{12 \sqrt{3}}{3}=4 \sqrt{3}=\frac{4 \sqrt{5}}{} \\
& \frac{2}{\sqrt{6}}=\frac{2 \times \sqrt{6}}{\sqrt{6}} \frac{2 \sqrt{6}}{\sqrt{6}}=\frac{\sqrt{6}}{3} \\
& \frac{4 \sqrt{2}}{\sqrt{8}}=\frac{4 \sqrt{3}}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}}=\frac{4 \sqrt{16}}{8}=\frac{4 \times 4}{8}=\frac{16}{8}=2
\end{aligned}
$$

Alt $\frac{4+\sqrt{2}}{2 \sqrt{2}}=2$

More Complicated Examples:

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& \frac{1}{\sqrt{2+1})} \times \frac{(\sqrt{2}-1)}{(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2+\sqrt{2}-\sqrt{2}-1} \\
&=\frac{\sqrt{2}-1}{1} \\
& \text { 2. } \begin{aligned}
& \frac{3}{(\sqrt{6}-2)} \times(\sqrt{6}+2) \\
&(\sqrt{6}+2)=\underline{\sqrt{2}-1} \\
&=\frac{3 \sqrt{6}+6}{6-4} \\
&=\frac{3 \sqrt{6}+6}{2}
\end{aligned}>\frac{3 \sqrt{6}}{2}+3
\end{aligned} \text { +3}
\end{aligned}
$$

3.

$$
\begin{aligned}
\frac{4}{\sqrt{3}+1}=\frac{4(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} & =\frac{4 \sqrt{3}-4}{3-1} \\
& =\frac{4 \sqrt{3}}{2}-\frac{4}{2} \\
& =2 \sqrt{3}-3
\end{aligned}
$$

4. $\frac{3 \sqrt{2}+4}{5 \sqrt{2}-7}=\frac{(3 \sqrt{2}+4)(5 \sqrt{2}+7)}{(5 \sqrt{2}-7)(5 \sqrt{2}+7)}$

$$
\begin{aligned}
& =\frac{15(2)+20 \sqrt{2}+21 \sqrt{2}+28}{25(2)-49} \\
& =\frac{30+20 \sqrt{2}+21 \sqrt{2}+28}{1} \\
& =58+4(\sqrt{2}
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Test Your Understanding:
Rationalise the denominator and simplify
2. $\frac{4}{\sqrt{5}-2} \times \frac{(\sqrt{5}+2)}{(\sqrt{5}+2)}=\frac{4 \sqrt{5}+8}{5-4}$

$$
=4 \sqrt{5}+8
$$

2. Solve $y(\sqrt{3}-1)=8$

Give your answer in the form $a+b \sqrt{3}$ where a and b are integers.

$$
\begin{aligned}
& y=\frac{8}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& y=\frac{8 \sqrt{3}+8}{3-1} \\
& y=\frac{8 \sqrt{3}+8}{2}
\end{aligned}
$$

Need a recap of the content in this chapter? Use this QR code to watch a Bicen maths YouTube video.

Exercise 1F Page 15

Exam Questions - For revision purposes

Q1.

(a) Simplify
 $\sqrt{ } 32+\sqrt{ } 18$

giving your answer in the form $a \sqrt{ } 2$, where a is an integer.
(b) Simplify

$$
\frac{\sqrt{32}+\sqrt{ } 18}{3+\sqrt{2}}
$$

giving your answer in the form $b \sqrt{ } 2+c$, where b and c are integers.

Total 6 marks

Q2.
(a) Find the value of $16^{\frac{1}{4}}$
(b) Simplify $x\left(2 x^{-\frac{1}{4}}\right)^{4}$

Q3.

Simplify

$$
\frac{5-2 \sqrt{ } 3}{\sqrt{3}-1}
$$

giving your answer in the form $p+q \sqrt{ } 3$, where p and q are rational numbers.

Q4.
(a) Evaluate ${ }^{(32)^{\frac{1}{2}}}$, giving your answer as an integer.
(b) Simplify fully $\left(\frac{25 x^{t}}{4}\right)^{\frac{1}{2}}$

Q5.
(a) Expand and simplify $(7+\sqrt{ } 5)(3-\sqrt{ } 5)$
(b) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $a+b \sqrt{5}$, where a and b are integers.

Q6.

Simplify
(a) $(3 \sqrt{ } 7)^{2}$
(b) $(8+\sqrt{ } 5)(2-\sqrt{ } 5)$

Q7.
Given that $32 \sqrt{ } 2=2^{a}$, find the value of a.

Q8.
(2) Express

$$
(5-\sqrt{ } 8)(1+\sqrt{ } 2)
$$

in the form $a+b \sqrt{ } 2$, where a and b are integers.
(ii) Express

$$
\sqrt{ } 80+\frac{30}{\sqrt{5}}
$$

in the form $c \sqrt{ } 5$, where c is an integer.

Q9.
Express $8^{2 x+3}$ in the form 2^{y}, stating y in terms of x.

1 Solve the following equations:
a $3 x+6=x-4$
b $5(x+3)=6(2 x-1)$
c $4 x^{2}=100$
d $(x-8)^{2}=64$
a) $3 x+6=x-4$
d) $(x-8)^{2}=64$
$2 x=-10$ $x=-5$ $x-8= \pm 8$

$$
(x-20)(x+20)
$$

$x-8=8 \quad x-8=-8$
b) $5 x+15=12 x-6$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

c) $4 x^{2}=100$ Alt $x=16 \quad x=0$

2 Factorise the following expressions:
a $x^{2}+8 x+15$
b $x^{2}+\frac{4}{3} x-10$
c $\quad 3 x^{2}-14 x-5$
d $x^{2}-400$
a) $(x+8)(x+5)$
d) $2 c^{2}-400$
b)

$$
(x+5)(x-2)
$$

c) $\begin{aligned} & \text { (8) }-15\end{aligned} \int_{2}^{2}+15$

	x	-5
$3 x$	$3 x^{2}$	$-15 x$
1	x	-5

$x^{2}=25$
$x= \pm 5$
$x= \pm 5$
$(3 x+1)(x-5)$

3 Sketch the graphs of the following equations, labelling the points where each graph crosses the axes:
a $y=3 x-6$
b $y=10-2 x$
c $x+2 y=18$
d $y=x^{2}$
-GCSE Mathematics
a)

$0=3 x-6$
$6=3 x$
$2=x$

$$
0=10-2 x
$$

b)

c) $x+2 y=18$
$\begin{aligned} & \Rightarrow 2 y=-x+18 \\ & y=-1 / 2 x+9\end{aligned}$
$x=0 \quad 0+2 y=18 y$
$(0,9)$

$$
2 y=18
$$

$$
y=9
$$

$y=0 \quad \partial c=18$
$(18,0)$

b $2 x-5 \geqslant 13$
d $4-x<11$
-GCSE Mathematics
When you divide or multiply by a negative interger. Remember to flip the sign-
a)
$\begin{aligned} x+8 & <11 \\ x & <3\end{aligned}$
c) $4 x-7 \leq 2 x-2$
$2 x \leq 5$
b) $2 x-8 \geqslant 13$
$x \leq 2.3$
$\begin{aligned} 2 x & \geqslant 18 \\ x & \geqslant 9\end{aligned}$
d) $4-x<11$
$-x<7$ $x<7-7$

Alt

$$
\begin{aligned}
4 & <11+x \\
-7 & <x \\
x & >-7
\end{aligned}
$$

Solving Quadratic Equations

The 3 ways to solve a quadratic: \rightarrow factorisation

- ∇ formula
- D completing the square

Recap:

By factorisation

1. $x^{2}+\stackrel{A}{5} x-\stackrel{M}{6}=0$
$(x+6)(x-1)=0$
$x+6=0$ or $x-1=0$ $x=-6 \quad o c=1$

Examples

1. $(x-1)^{2}=5$

$$
\begin{aligned}
x-1 & = \pm \sqrt{5} \\
x & =1 \pm \sqrt{5}
\end{aligned}
$$

Using the Quadratic Formula

$$
\begin{aligned}
& \text { 2. } x^{2}+5 x-6=0 \\
& a=1 \\
& b=5 \\
& x=-b \pm \sqrt{b^{2}-4 a c} \\
& c=-6 \\
& x=\frac{-5 \pm \sqrt{5^{2}-4(1)(-6)}}{2(1)} \overbrace{}^{x=\frac{-5 \pm 7}{2}} \\
& x=-5 \pm \sqrt{25+24} \\
& x=\frac{-5 \pm \sqrt{49}}{2} \\
& x=-\frac{12}{2} \\
& =-6
\end{aligned}
$$

2. Solve $x-6 \underline{\sqrt{x}}+8=0$

$$
\begin{array}{cl}
y=4 & y=2 \\
\sqrt{x}=4 & \sqrt{x}=2 \\
& x=4
\end{array}
$$

$$
x=16 \quad x=4
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Test your understanding

$$
\begin{aligned}
& \text { 1. }(x+3)^{2}=x+5 \\
& x^{2}+6 x+9=x+5 \\
& x^{2}+5 x+4=0 \\
& (x+4)(x+1)=0 \\
& x=-4 x=-1
\end{aligned}
$$

3. $\sqrt{x+3}=x-3$

$$
\begin{aligned}
x+3 & =(x-3)^{2} \\
x+3 & =x^{2}-6 x+9 \\
0 & =x^{2}-7 x+6 \\
0 & =(x-6)(x-1) \\
x & =6 \quad \text { oc }=1
\end{aligned}
$$

Solving by Completing the Square
Completing the Square form:

$$
=d(x+a)^{2}+b
$$

Worked Examples $(a=1): \quad a x^{2}+b x+c$

1. $x^{2}+12 x$

$$
(x+6)^{2}-36
$$

2. $x^{2}+8 x$

$$
(x+4)^{2}-16
$$

2. $(2 x+1)^{2}=5$

$$
\begin{aligned}
2 x+1 & = \pm \sqrt{5} \\
2 x & =-1 \pm \sqrt{5} \\
x & =\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

4. $2 x+\sqrt{x}-1=0$
let $y=\sqrt{x}$

$$
\begin{aligned}
& 2 y^{2}+y-1=0 \quad y^{2}=x . \\
& (2 y-\underbrace{1)(y+1}_{-y})=0 \quad \begin{array}{l}
\text { Exercise 2A/2B Page } \\
20 / 22
\end{array} \\
& 2 y=1 \quad y=-1 \\
& y=1 / 2 \quad \sqrt{x}=-1 \\
& \sqrt{x}=1 / 2 \quad x=1 \\
& x=1 / 4 \quad x
\end{aligned}
$$

3. $x^{2}-2 x$

$$
(x-1)^{2}-1
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

More complicated examples (a not equal to 1):

1. Express $2 x^{2}+12 x+7$ in the form $a(x+b)^{2}+c$

$$
\begin{aligned}
& 2\left[x^{2}+6 x\right]+7 \\
& 2\left[(x+3)^{2}-9\right]+7 \\
& 2(x+3)^{2}-18+7 \\
& 2(x+3)^{2}-11
\end{aligned}
$$

2. Express $5-3 x^{2}+6 x$ in the form $a-b(x+c)^{2}$

$$
\begin{aligned}
& -3 x^{2}+6 x+5 \\
& -3\left[x^{2}-2 x\right]+5 \\
& -3\left[(x-1)^{2}-1\right]+5 \\
& -3(x-1)^{2}+3+5
\end{aligned}
$$

Test Your Understanding:

1. Express $3 x^{2}-18 x+4$ in the form $a(x+b)^{2}+c$

$$
\begin{aligned}
& 3\left[x^{2}-6 x\right]+4 \\
& 3\left[(x-3)^{2}-9\right]+4 \\
& 3(x-3)^{2}-27+4 \\
& 3(x-3)^{2}-23
\end{aligned}
$$

2. Express $20 x-5 x^{2}+3$ in the form $a-b(x+c)^{2}$

$$
\begin{aligned}
& -5 x^{2}+20 x+3 \\
& -5\left[x^{2}-4 x\right]+3 \\
& -5\left[(x-2)^{2}-4\right]+3(x-2)^{2}+20+3
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Solving by Completing the Square:

Note: Previously we factorised out the 3 . This is because $3 x^{2}-18 x+4$ on its own is an expression, so dividing by 3 (instead of factorising) would change the expression. However, in an equation, we can divide both sides by 3 without affecting the solutions.

Example
Solve the equation $3 x^{2}-18 x+4=0$ by completing the square.
Completing the square

$$
\begin{aligned}
& 3\left(x^{2}-6 x\right)+4=0 \\
& 3\left[(x-3)^{2}-9\right]+4=0 \\
& 3(x-3)^{2}-27+4=0 \\
& 3(x-3)^{2}-23=0
\end{aligned}
$$

Solving.

$$
\begin{aligned}
3(x-3)^{2} & =23 \\
(x-3)^{2} & =\frac{23}{3} \\
x-3 & = \pm \sqrt{\frac{23}{3}} \\
x & =3 \pm \sqrt{\frac{23}{3}}
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions.
Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
Functions:

Transition Task. Chapter 1 - Algebraic Expressions.
$f(x)=y$
Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
Examples:

1. If $f(x)=x^{2}-3 x$ and $g(x)=x+5, \quad x \in \mathbb{R}$
a) Find $f(-4)$
b) Find the values of x for which $f(x)=g(x)$
c) Find the roots of $f(x)$. $-\nabla$ cross x-axis on your graph
d) Find the roots of $g(x)$.
a) $f(-4)=(-4)^{2}-3(-4)$
b)

$$
\begin{aligned}
& =16+12 \\
& =28
\end{aligned}
$$

b)

$$
\begin{aligned}
& f(x)=x^{2}-3 x \\
& f(x)=0 \\
& 0=x^{2}-3 x \\
& 0=x(x-3) \\
& x=0 \quad x=3 \rightarrow \text { roots }
\end{aligned}
$$

$$
x=5 \quad x=-1
$$

d)

$$
\begin{aligned}
g(x) & =x+S \\
g(x) & =0 . \\
0 & =x+S \\
x & =-S
\end{aligned}
$$

2. Determine the minimum value of the function $f(x)=x^{2}-6 x+2$, and state the value of x for which this minimum occurs.

$$
f(x)=x^{2}-6 x+2
$$

$$
=(x-3)^{2}-9+2
$$

$$
\begin{array}{r}
\min (x+a)^{2}+b \\
(-a, b)
\end{array}
$$

$$
=(x-3)^{2}-7
$$

$\min (3,-7)$
x for which this
min/max occurs

5
$(0,10)$ max

1. Find the minimum value of $f(x)=2 x^{2}+12 x-5$ and state the value of x for which this occurs.

$$
\begin{aligned}
f(x) & =2\left[x^{2}+6 x\right]-5 \\
& =2\left[(x+3)^{2}-9\right]-5 \\
& =2(x+3)^{2}-18-5 \\
& =2(x+3)^{2}-23
\end{aligned}
$$

$\min (-3,-23)$
2. Find the roots of the function $f(x)=2 x^{2}+3 x+1$

$$
\begin{aligned}
f(x) & =(2 x+1)(x+1) \\
x & =-\frac{1}{2} \quad x=-1
\end{aligned}
$$

3. Find the roots of the function $f(x)=x^{4}-x^{2}-6$

$$
\begin{array}{rlrl}
y=x^{2} & \sqrt{y}=x & f(\sqrt{y}) & =y^{2}-y-6 \\
y^{2}=x^{4} & & =(y-3)(y+2) \\
& y & =3 & y=-2 \\
& & & \\
x^{2} & =3 & x^{2}=-2 \\
x & = \pm \sqrt{3} \quad x
\end{array}
$$

Transition Task. Chapter 1 - Algebraic Expressions.
Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
Quadratic Graphs:

\min

Example: Sketch the graph of $y=x^{2}+3 x-4$ and find the coordinates of the turning point.

$$
\begin{aligned}
& y=x^{2}+3 x-4 \\
& y=\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}-4 \\
& y=\left(x+\frac{3}{2}\right)^{2}-\frac{25}{4}
\end{aligned}
$$

$$
\uparrow(0,-4)
$$

$$
-\frac{9}{4}-\frac{16}{4}
$$

$$
-\frac{25}{4}
$$

find roots

$$
\begin{aligned}
& y=x^{2}+3 x-4 \\
& 0=(x+4)(x-1) \\
& x=-4 \quad x=1
\end{aligned}
$$

$\min \left(-\frac{3}{2},-\frac{25}{4}\right)$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Example

$$
\alpha \cap \alpha(0,-3)
$$

Sketch the graph of $y=4 x-2 x^{2}-3$ and find the coordinates of the turning point. Write down the equation of the line of symmetry.

$$
\begin{aligned}
& y=-2 x^{2}+4 x-3 \\
& y=-2\left[x^{2}-2 x\right]-3 \\
& y=-2\left[(x-1)^{2}-1\right]-3 \\
& y=-2(x-1)^{2}+2-3 \\
& y=-2(x-1)^{2}-1 \\
& \quad \max (1,-1)
\end{aligned}
$$

Root

$$
\begin{aligned}
& 0=-2(x-1)^{2}-1 \\
& 1=-2(x-1)^{2} \\
& \frac{1}{-2}=(x-1)^{2} \\
& \sqrt{\frac{1}{-2}}=x \text { error. }
\end{aligned}
$$

no roots

Test Your Understanding
Sketch the following, indicating any intercepts with the axis, the turning point and the equation of the line of symmetry.

1. $y=x^{2}+4$

$$
\text { torning point }=(0,4)
$$

$$
\text { Symmetry } x=0
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

$$
\begin{aligned}
& \text { 2. } y=x^{2}-7 x+10 \\
& y=(x-5)(x-2) \\
& x=5 \quad x=2
\end{aligned}
$$

line of symmetry $\Rightarrow x=3 . \mathrm{s}$ min point

$$
\begin{aligned}
& y=(3.5)^{2}-7(3.8)+10 \\
& y=-\frac{9}{4} \\
& \left(3.5,-\frac{9}{4}\right)
\end{aligned}
$$

3. $y=5 x+3-2 x^{2}$

$$
\begin{aligned}
& y=-2 x^{2}+5 x+3 \\
& y=-2\left[x^{2}-\frac{5}{2} x\right]+3 \\
& y=-2\left[\left(x-\frac{3}{4}\right)^{2}-\frac{25}{16}\right]+3 \\
& y=-2\left(x-\frac{5}{4}\right)^{2}+\frac{25}{8}+3 \\
& y=-2\left(x-\frac{3}{4}\right)^{2}+\frac{49}{8} \\
& \left(+\frac{3}{4}+\frac{49}{8}\right) \text { max }
\end{aligned}
$$

$$
\frac{5+2}{2}=3.5
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
4. $y=x^{2}+4 x+11$
from call. $x=-2+\sqrt{7} i \rightarrow$ complex number
 no roots?

$$
(-2,7)
$$

Complete.

$$
\begin{aligned}
& y=(x+2)^{2}-4+11 \\
& y=(x+2)^{2}+7
\end{aligned}
$$

Determine the equation of this quadratic graph in the form $y=a x^{2}+b x+c$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Determine the equation of this quadratic graph in the form $y=a x^{2}+b x+c$

Determine the equation of this quadratic graph in the form $y=a x^{2}+b x+c$

Transition Task. Chapter 1 - Algebraic Expressions.

The Discriminant
Quadratic formula r $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ Discriminant $\rightarrow b^{2}-4 a c$

Quick fire questions:

Equation	Discriminant $b^{2}-4 a c$	No. of distinct real roots
$x^{2}+3 x+4=0$	$(3)^{2}-4(1)(4)=-7$	no real roots
$x^{2}-4 x+1=0$	$(-4)^{2}-4(1)(1)=12$	2 real roots
$x^{2}-4 x+4=0$	$(-4)^{2}-4(1)(4)=0$	1 repeated root
$2 x^{2}-6 x-3=0$	$(-6)^{2}-4(2)(-3)=60$	2 real roots
$x-4-3 x^{2}=0$ $-3 x^{2}+x-4=0$	$(1)^{2}-4(-3)(-4)=-47$	no real roots
$-x^{2}+0 x+1=0$	$(0)^{2}-4(-1)(1)=4$	2 real roots

Example:
8. The equation $x^{2}+2 p x+(3 p+4)=0$, where p is a positive constant, has equal roots.
(a) Find the value of p.

$$
\begin{equation*}
b^{2}-4 a c=0 \tag{4}
\end{equation*}
$$

(b) For this value of p, solve the equation $x^{2}+2 p x+(3 p+4)=0$.

$$
x^{2}+8 x+16=0
$$

$$
\begin{array}{r}
\text { Using } b^{2}-4 a c=0 \tag{2}\\
(2 p)^{2}-4(1)(3 p+4)=0 \\
4 p^{2}-12 p-16=0 \\
p^{2}-3 p-4=0 \\
(p-4)(p+1)=0 \\
p=4 \text { or } p=-1 \\
x
\end{array}
$$

$$
(x+4)^{2}=0
$$

$$
x=-4 \quad \text { twice }
$$

Test Your Understanding:

${ }_{\text {1. }} . x^{2}+5^{b} k x+\left(10{ }^{c}+5\right)=0$ where k is a positive constant.
Given that this equation has equal roots, determine the value of k.

$$
\begin{gathered}
\text { Using } b^{2}-4 a c=0 \quad \text { a } b^{2}-4 a c=0 \\
(5 k)^{2}-4(1)(10 k+5)=0 \\
25 k^{2}-40 k-20=0 \\
5 k^{2}-8 k-4=0 \\
k=2 \quad h=-0.4 \\
x
\end{gathered}
$$

2. Find the range of values of k for which $x^{2}+6 x+k=0$ has two distinct real solutions.

$$
\begin{aligned}
&(6)^{2}-4(1)(k)>0 \\
& 36-4 k>0 \\
& 36>4 k \\
& 9>h \\
& k<9
\end{aligned}
$$

Modelling

Example
A spear is thrown over level ground from the top of a tower.

The height, in metres, of the spear above the ground after t seconds is modelled by the function: $h(t)=12.25+14.7 t-4.9 t^{2}, \quad t \geq 0$
a) Interpret the meaning of the constant term 12.25 in the model.
12.25 is our initial height of our spear
b) After how many seconds does the spear hit the ground?
$h=0$
$0=-4.9 t^{2}+14.7 t+12.25$
$t=3.68 \quad t=-0.679$
c) Write $h(t)$ in the form $A-B(t-C)^{2}$, where A, B and C are constants to be found.

$$
\begin{aligned}
h(t) & =-4.9 t^{2}+14.7 t+12.25 \\
& =-4.9\left(t^{2}-3 t\right)+12.25 \\
& =-4.9\left[\left(t-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+12.25 \\
& =-4.9\left(t-\frac{3}{2}\right)^{2}+\frac{441}{40}+12.25 \\
& =\frac{931}{40}-4.9\left(t-\frac{3}{2}\right)^{2}
\end{aligned}
$$

d) Using your answer to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached?

$$
\begin{aligned}
\left(\frac{3}{2}, \frac{931}{60}\right) \quad \max \text { height } & =23.3 \mathrm{~m} \\
\text { tine } & =1.5 \mathrm{~s}
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Quadratics exam style question

A ball is thrown upwards from a rooftop 80 m above the ground. It will reach a maximum vertical height and then fall back to the ground.

The height of the ball from ground at time t is h, given by the formula:
$h=-16 t^{2}+64 t+80$
a) Calculate the height reached by the ball after 1 second.
b) Calculate the maximum height reached by the ball and after how many seconds from when it is thrown this maximum height is reached.
c) Calculate how long will it take before the ball hits the ground.

Need a recap of the content in this chapter? Use this QR code to watch a Bicen maths YouTube video.

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Exam Questions

Q1.

The equation

$$
(p-1) x^{2}+4 x+(p-5)=0, \text { where } p \text { is a constant }
$$

has no real roots.
(a) Show that p satisfies $p^{2}-6 p+1>0$
(b) Hence find the set of possible values of p.

Q2.

In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
(i) Solve the equation

$$
x \sqrt{2}-\sqrt{18}=x
$$

writing the answer as a surd in simplest form.
(ii) Solve the equation

$$
4^{3 x-2}=\frac{1}{2 \sqrt{2}}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Q3.

$$
4 x-5-x^{2}=q-(x+p)^{2}
$$

where p and q are integers.
(a) Find the value of p and the value of q.
(b) Calculate the discriminant of $4 x-5-x^{2}$
(c) On the axes on page 17, sketch the curve with equation $y=4 x-5-x^{2}$ showing clearly the coordinates of any points where the curve crosses the coordinate axes.

Q4.
$\mathrm{f}(x)=x^{2}+(k+3) x+k$
where k is a real constant.
(a) Find the discriminant of $f(x)$ in terms of k.
(b) Show that the discriminant of $\mathrm{f}(x)$ can be expressed in the form $(k+a)^{2}+b$, where a and b are integers to be found.
(c) Show that, for all values of k, the equation $\mathrm{f}(x)=0$ has real roots.

Q5.
The equation $x^{2}+3 p x+p=0$, where p is a non-zero constant, has equal roots.
Find the value of p.

1 $\begin{aligned} & A=[\text { factors of } 12] \\ & B=[\text { factors of } 20\} \end{aligned}$ Weite down the numbers in each of these sets: a $A \cap B$ b $(A \cup B)^{\prime}$ a) $A \cap B$ b) $(A \cup B)^{\prime}$ $\Rightarrow 1,2,4$ $\rightarrow 7,9,11,13$	2 Simplify these expressions, a $\sqrt{75}$ b) $\frac{2 \sqrt{45}+3 \sqrt{32}}{6}$ a) $\begin{aligned} \sqrt{75} & =\sqrt{28} \times \sqrt{3} \\ & =5 \sqrt{3} \end{aligned}$ $\text { b) } \begin{aligned} & \frac{2(\sqrt{9} \sqrt{5})+3(\sqrt{16} \sqrt{2})}{6} \\ &=\frac{2(3 \sqrt{5})+3(4 \sqrt{2})}{6} \\ &= \frac{6 \sqrt{5}+12 \sqrt{3}}{6} \\ &= \sqrt{5}+2 \sqrt{2} \end{aligned}$
3 Match the equations to the correct graph. Label the points of intersection with the axes and the coordinates of the turning point. a $y=9-x^{2}$ $c y=(x-7)(2 x+5)$ $\text { b } y=(x-2)^{2}+4$ iii $\text { a) } \begin{aligned} & y=9-x^{2} \\ & y=(3-x)(3+x) \\ & 0=(3-x)(3+x) \\ & x=3 \quad x=-3 \end{aligned}$ a)	$\begin{aligned} & \text { b) } y=(x-2)^{2}+4 \\ & \text { イP }=0 \quad(2,4) \\ & y=x^{2}-4 x+4+4 \\ & y=x^{2}-4 x+8 \\ & \text { c) } \quad y=2 x^{2}-14 x+5 x-35 \\ & y=2 x^{2}-9 x-35 \\ & y=(x-7)(2 x+5) \quad \text { イP } \quad\left(\frac{9}{2}-\frac{181}{2}\right) \\ & x=7 \quad x=-\frac{5}{2} \\ & y=2\left[x^{2}-\frac{9}{2} x\right]-35 \\ & y=2\left[\left(x-\frac{9}{2}\right)^{2}-\frac{81}{4}\right]-35 \\ & y=2\left(x-\frac{9}{2}\right)^{2}-\frac{81}{2}-35 \\ & y=2\left(x-\frac{9}{2}\right)^{2}-\frac{151}{2} \end{aligned}$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Simultaneous Equations

Simultaneous Equations Solution Sets

Example (You can do this on your calculator!)
Solve the simultaneous equations

$$
\begin{aligned}
& \text { (1) } 3 x+y=8 \\
& \text { (2) } 2 x-3 y=9
\end{aligned}
$$

(1) $3 x+y=8$
(2) $2 x-3 y=9$
(1) $y=-3 x+8$ sub into (2)
(1) $\times 3+\begin{array}{r}9 x+3 y=24 \\ 2 x-3 y=9\end{array}$

$$
\begin{aligned}
& 2 x-8(-3 x+8)=9 \\
& 2 x+9 x-24=9
\end{aligned}
$$

$$
\begin{array}{rlr}
11 x & =33 & (3,-1) \tag{3,-1}\\
x & =3 &
\end{array}
$$

(1)
(1) $3(3)+y=8$
$y=-3(8)+8$
$y=-1$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Linear and Quadratic
Example:
Solve the simultaneous equations:
(1) $x+2 y=3$
(2) $x^{2}+3 x y=10$
(1) $x=3-2 y$
sob (1) into (2)

$$
\Rightarrow \quad x=3-2\left(-\frac{1}{2}\right)
$$

$$
\begin{aligned}
(3-2 y)^{2}+3(3-2 y) y & =10 \\
9-12 y+4 y^{2}+9 y-6 y^{2} & =10 \\
0 & =2 y^{2}+3 y+1 \\
0 & =(2 y+1)(y+1) \\
y & =-1 / 2 \quad y=-1
\end{aligned} \quad \begin{aligned}
& x=5 \\
& \\
& x=3-2(-1) \\
& \\
& (5,-1)
\end{aligned}
$$

Test Your Understanding:

1. Solve the simultaneous equations: $3 x^{2}+y^{2}=21$ and $y=x+1$

$$
\begin{aligned}
& 3 x^{2}+(x+1)^{2}=21 \\
& 3 x^{2}+x^{2}+2 x+1=21 \\
& 4 x^{2}+2 x-20=0 \\
& 2 x^{2}+x-10=0 \\
& (2 x+5)(x-2)=0 \\
& x=-\frac{5}{2} \quad x=2
\end{aligned}
$$

$$
\begin{aligned}
y & =-\frac{5}{2}+1 \quad\left(-\frac{5}{2},-\frac{3}{2}\right) \\
& =\frac{-5}{2}+\frac{2}{2} \\
& =\frac{-3}{2} \\
y & =2+1 \quad(2,3) \\
y & =3
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions.
Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
Simultaneous Equations and Graphs
Examples:
1a. On the same axes, draw the graphs of $2 x+y=3$ and $y=x^{2}-3 x+1$

$$
y=-2 x+3
$$

$$
x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(1)}}{2(1)}
$$

$$
x=2.62 \text { or } x=0.382
$$

$$
\begin{aligned}
& y=\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+1 \\
& y=\left(x-\frac{3}{2}\right)^{2}-\frac{5}{4} \\
& \left(\frac{3}{2},-\frac{5}{4}\right)
\end{aligned}
$$

ib. Use your graph to write down the solutions to the simultaneous equations

$$
(-1, \delta) \quad(2,-1)
$$

ic. What algebraic method could we have used to show the graphs would have intersected

$$
\begin{array}{r}
\text { twice? } \quad y=-2 x+3 \\
-2 x+3=x^{2}-3 x+1 \\
0=x^{2}-x-2
\end{array}
$$

$$
\begin{aligned}
y & =x^{2}-3 x+t^{2} \\
b^{2}-4 a c & =(-1)^{2}-4(1)(-2) \\
& =1+8 \\
& =9
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions.
Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
Example 2
a) On the same axes, draw the graphs of:

$$
y=2 x-2 \quad y=x^{2}+4 x+1
$$

x	-5	-4	-3	-2	-1	0	1	2
y	6	1	-2	-3	-2	1	6	13

$$
\begin{aligned}
2 x-2 & =x^{2}+4 x+1 \\
0 & =x^{2}+2 x+3 \\
\text { Discriminate } & =(2)^{2}-4(1)(3) \\
& =-8
\end{aligned}
$$

<0 ie no real solution.

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Test Your Understanding
The line with equation $y=2 x+1$ meets the curve with equation $k x^{2}+2 y+(k-2)=0$ at exactly one point. Given that k is a positive constant:
a) Find the value of $k . \quad b^{2}-4 a c=0$
b) For this value of k, find the coordinates of this point of intersection

$$
\begin{aligned}
2 y & =-k x^{2}-(k-2) \\
y & =\frac{-k}{2} x^{2}-\frac{(k-2)}{2}
\end{aligned}
$$

a)

$$
\begin{gathered}
k x^{2}+2(2 x+1)+(k-2)=0 \\
k x^{2}+4 x+2+k-2=0 \\
k x^{2}+4 x+k=0 \\
b^{2}-4 a c=4^{2}-4(k)(k) \\
0=16-4 k^{2} \\
4 k^{2}=16 \\
k^{2}=4 \\
k= \pm 2
\end{gathered}
$$

b)

$$
\begin{aligned}
2 x^{2}+2 y & =0 \\
\text { (1) } y & =-x^{2}
\end{aligned}
$$

(2)

$$
y=2 x+1
$$

$$
\begin{aligned}
0= & (2) \\
-x^{2} & =2 x+1 \\
0 & =x^{2}+2 x+1 \\
0 & =(x+1)^{2}
\end{aligned}
$$

$x=-1$ repeated root.
(2)

$$
y=2(-1)+1
$$

$$
(-1,-1)
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Set Builder Notation

Recap from GCSE:

- We use curly braces to list the values in a set, e.g. $A=\{1,4,6,7\}$
- If A and B are sets then $A \cap B$ is the intersection of A and B, giving a set which has the elements in A and B.
- $A \cup B$ is the union of A and B, giving a set which has the elements in A or in B.
- \varnothing is the empty set, i.e. the set with nothing in it.
- Sets can also be infinitely large. \mathbb{N} is the set of natural numbers (all positive integers), \mathbb{Z} is the set $-\mathbb{D}_{-3,0,7}$ of all integers (including negative numbers and 0) and \mathbb{R} is the set of all real numbers (including all possible decimals).
- We write $x \in A$ to mean " x is a member of the set A ". So $x \in \mathbb{R}$

$$
\longrightarrow 2.3,-1,4,0
$$

Quick Fire Examples

$$
\begin{aligned}
& \{1,2,3\} \cap\{3,4,5\}=\{8\} \\
& \{1,2,3\} \cup\{3,4,5\}=\{1,2,3,4, \delta\} \\
& \{1,2\} \cap\{3,4\}=\varnothing
\end{aligned}
$$

Examples: 6 integers $\{$ ie $-3,-2,-1,0,1,2,3\}$

1. $\{2 x: x \in \mathbb{Z}\} \rightarrow$ all even interges,

$$
\{\ldots-6,-4,-2,0,2,4,6 \ldots\}
$$

Natural Numbers $\{1,2,3 \ldots\}$
2. $\left\{2^{x}: x \in \mathbb{N}\right\}=\{2,4,8,16,32,64 \ldots \ldots\}$

$$
\phi\{2,3,5,7,11,13 \ldots\}
$$

3. $\{x y: x, y$ are prime $\}$

$$
=\{4,6,9,10,15,14 \ldots\}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Solving Inequalities
Linear inequalities Examples

1. $2 x+1>5$

$$
2 x \geqslant 4
$$ $x>2$

2. $3(x-5) \geq 5-2(x-8)$

$$
\begin{aligned}
& 3 x-15 \geqslant 5-2 x+16 \\
& 5 x \geqslant 36 \\
& x \geqslant 7.2
\end{aligned}
$$

3. $-x \geq 2$
$\partial c \leq-2$

Combining Inequalities

When combining inequalities always draw a number line to help!

Example:
If $x<3$ and $2 \leq x<4$, what is the combined solution set?

$2 \leq x<3$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Quadratic Inequalities:
Examples
\rightarrow above $x^{-a x^{i s}}$

1. Solve $x^{2}+2 x-15>0$
$0=(x+5)(x-8)$

$$
x=-5 \quad x=3
$$

$$
\{\partial c: \partial c<-s \quad u \quad \partial c>3\} \quad \partial c \in \mathbb{R}
$$

\rightarrow below
2. Solve $x^{2}+2 x-15 \leq 0$

$$
\{x:-5 \leq x \leq 3\}, x \in \mathbb{R}
$$

3. Solve $x^{2}+5 x \geq-4$

$$
\begin{gathered}
x^{2}+5 x+4 \geqslant 0 \\
(x+4)(x+1)=0 \\
x=-4 \quad x=-1
\end{gathered}
$$

4. Solve $x^{2}<9$

$$
\{x: x<-4 \cup x>-1\} \quad x \in \mathbb{R}
$$

$$
\begin{aligned}
& x^{2}-9<0 \\
& (x+3)(x-3)=0 \\
& x=3, x=-3 \\
& \{x:-3<x<3\} \quad x \in \mathbb{R}
\end{aligned}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Test Your Understanding

Find the set of values of x for which
(a) $3(x-2)<8-2 x$,
(2)
(b) $(2 x-7)(1+x)<0$,
(c) both $3(x-2)<8-2 x$ and $(2 x-7)(1+x)<0$.
a) $3 x-6<8-2 x$

$$
\begin{align*}
& 5 x<14 \\
&\{x: \quad x<2.8 \\
& x \in \mathbb{R}
\end{align*}
$$

Given that the equation $2 q x^{2}+q x-1=0$, where q is a constant, has no real roots,
(a) show that $q^{2}+8 q<0$.
(2) $b^{2}-4 a c<0$
(b) Hence find the set of possible values of q.
(3)
a)

$$
\begin{aligned}
b^{2}-4 a c & \Rightarrow q^{2}-4(2 q)(-1)<0 \\
& \Rightarrow q^{2}+8 q<0
\end{aligned}
$$

b) $\quad q(q+8)=0$

$$
q=0 \quad q=-8
$$

$$
\{q:-8<q<0\} \quad q \in \mathbb{R}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Division by x

Find the set of values for which $\frac{6}{x}>2, \quad x \neq 0$
\longrightarrow To get wound this problem Ω

$$
\frac{6}{x}>2
$$

ω_{e} can't multiply x because
\bigcirc it might be negative

$$
6 x>2 x^{2}
$$

$$
0>2 x^{2}-6 x
$$

$$
0>x^{2}-3 x
$$

$0=x(x-3)$
$x=0$ or $x=3$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities

Sketching Inequalities:
Examples

1. L_{1} has equation $y=12+4 x . L_{2}$ has equation $y=x^{2}$.

The diagram shows a sketch of L_{1} and L_{2} on the same axes.
a) Find the coordinates of P_{1} and P_{2}, the points of intersection.
b) Hence write down the solution to the inequality

$$
12+4 x>x^{2}
$$

(1) = (2)

$$
\begin{aligned}
12+4 x & =x^{2} \\
0 & =x^{2}-4 x-12 \\
0 & =(x-6)(x+2) \\
x & =6 \quad x=-2 \\
y & =36 \quad y=4
\end{aligned}
$$

$$
\{x ;-2<x<6\} x \in \mathbb{R}
$$

Transition Task. Chapter 1 - Algebraic Expressions. Chapter 2 - Quadratics. Chapter 3 - Equations and Inequalities
2. Shade the region that satisfies the inequalities:
(1)

$$
\begin{gathered}
y=-\frac{1}{2} x+7 \\
(0,7) \\
y=0 \quad 0=-\frac{1}{2} x+7 \\
\frac{1}{2} x=7 \\
x=4 \\
(14,0) \\
y=x^{2}-3 x-4 \\
y=\left(x^{2}-4\right)(x+1) \\
x=4
\end{gathered}
$$

(c) $2 y+x<14$
(2) y

Need a recap of the content in this chapter? Use this QR code to watch a Bice maths YouTube video.

Exam Style Questions

Q1.

Find the set of values of x for which
(a) $2(3 x+4)>1-x$
(b) $3 x^{2}+8 x-3<0$

Q2.
Find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$

Q3.
The equation

$$
(k+3) x^{2}+6 x+k=5, \text { where } k \text { is a constant, }
$$

has two distinct real solutions for x.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}-2 k-24 \tag{4}
\end{equation*}
$$

(b) Hence find the set of possible values of k.

Q4.
Find the set of values of x for which
(a) $3 x-7>3-x$
(b) $x^{2}-9 x \leq 36$
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$

Exam Style Questions

Q1.

Find the set of values of x for which
(a) $2(3 x+4)>1-x$
(b) $3 x^{2}+8 x-3<0$

Q2.
Find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$

Q3.
The equation

$$
(k+3) x^{2}+6 x+k=5, \text { where } k \text { is a constant, }
$$

has two distinct real solutions for x.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}-2 k-24 \tag{4}
\end{equation*}
$$

(b) Hence find the set of possible values of k.

Q4.
Find the set of values of x for which
(a) $3 x-7>3-x$
(b) $x^{2}-9 x \leq 36$
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$

Exam Style Questions

Q1.

Find the set of values of x for which
(a) $2(3 x+4)>1-x$
(b) $3 x^{2}+8 x-3<0$

Q2.
Find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$

Q3.
The equation

$$
(k+3) x^{2}+6 x+k=5, \text { where } k \text { is a constant, }
$$

has two distinct real solutions for x.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}-2 k-24 \tag{4}
\end{equation*}
$$

(b) Hence find the set of possible values of k.

Q4.
Find the set of values of x for which
(a) $3 x-7>3-x$
(b) $x^{2}-9 x \leq 36$
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$

Exam Style Questions

Q1.

Find the set of values of x for which
(a) $2(3 x+4)>1-x$
(b) $3 x^{2}+8 x-3<0$

Q2.
Find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$

Q3.
The equation

$$
(k+3) x^{2}+6 x+k=5, \text { where } k \text { is a constant, }
$$

has two distinct real solutions for x.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}-2 k-24 \tag{4}
\end{equation*}
$$

(b) Hence find the set of possible values of k.

Q4.
Find the set of values of x for which
(a) $3 x-7>3-x$
(b) $x^{2}-9 x \leq 36$
(c) both $3 x-7>3-x$ and $x^{2}-9 x \leq 36$

