This test is divided into non-calculator (30 marks/minutes) and calculator (20 marks/minutes) sections which can be delivered separately. The following marks are awarded for each question. | В | Unconditional accuracy mark | |----|---| | M | Method mark – the correct method must be shown but there may be an arithmetic error; the sight of the value given in brackets implies the award of the method mark | | A | Accuracy mark – unless the question specifies that working must be shown then the sight of the correct answer implies the award of full marks (unless the answer clearly comes from incorrect working) | | С | Communication mark | | P | Process mark to show correct process for problem solving. Any other process of a similar standard to achieve an accurate result is acceptable to achieve this mark | | FT | Incorrect values may be followed through from one step to the next provided that the correct method is seen in each step and the only errors are arithmetic. This is shown in mark schemes by putting a number in inverted commas | | OE | Or equivalent answer mark | | Non-C | Non-Calculator | | | | |-------|-----------------|------|---|--| | Q | Answer | Mark | Comment | | | 1 | 10 | M1 | correct numerator of 10×5 | | | | | M1 | correct denominator of 8 – 3 | | | | | A1 | | | | 2a | 59 | B1 | | | | 2b | 7 ²⁴ | B1 | | | | 2c | 32 | M1 | 2^{7+3-5} or an answer of 2^5 | | | | | A1 | | | | 3 | 8.3 and 8.4 | P1 | for testing values between 8 and 9 inclusive (could be implied by answer) | | | | | P1 | for 8.2 and 8.3 or 8.4 and 8.5 | | | | | | or $8.3^2 = 68.89$ or $8.4^2 = 70.56$ | | | | | A1 | | | ## Pearson Edexcel GCSE (9-1) Mathematics Higher | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 | m = 3 and $n = 7$ | B1 | 2 2 2 2 2 | |---|----|---------------------|------------|---| | 5a 2.0272 B1 5b 72.4 B1 5c 362 M1 for 20272 ÷ 28 ÷ 2 or 724 ÷ 2 A1 P1 for any attempt to list any four factors of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 P1 for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ A1 P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 4 | m = 3 and $n = 7$ | ы | | | 5a 2.0272 B1 5b 72.4 B1 5c 362 M1 for 20272 ÷ 28 ÷ 2 or 724 ÷ 2 A1 P1 for any attempt to list any four factors of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 P1 for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ A1 P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^{-3}$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | | | | or $m = 3$ or $n = 7$ | | 5b 72.4 B1 5c 362 M1 for $20272 \div 28 \div 2$ or $724 \div 2$ A1 P1 for any attempt to list any four factors of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 P1 for $\sqrt{8} = 2^{\frac{1}{2}}$ or $4 \times 8 = 2^{2n}$ A1 A1 8 $5(.0) \times 10^5$ P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{3}}$ | | | A 1 | | | 5c 362 M1 for $20272 \div 28 \div 2$ or $724 \div 2$ A1 P1 for any attempt to list any four factors of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 P1 for $\sqrt{8} = 2^{\frac{1}{2}}$ or $4 \times 8 = 2^{2n}$ A1 P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 5a | 2.0272 | B1 | | | A1 6 18 and 24 P1 for any attempt to list any four factors of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 7 $\frac{5}{2}$ OE P1 for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ A1 8 $5(.0) \times 10^5$ P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 5b | 72.4 | B1 | | | 6 18 and 24 P1 for any attempt to list any four factors of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 P1 for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ A1 8 $5(.0) \times 10^5$ P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 5c | 362 | M1 | for 20272 ÷ 28 ÷ 2 or 724 ÷ 2 | | of 72 less than 50 or lists any four multiples of 6 less than 50 P1 for two numbers with HCF of 6 or LCM of 72 A1 P1 for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ A1 8 $5(.0) \times 10^5$ P1 for 0.5×10^6 or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | | | A1 | | | LCM of 72 A1 7 | 6 | 18 and 24 | P1 | of 72 less than 50 or lists any four | | 7 $\frac{5}{2}$ OE P1 for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ 8 $5(.0) \times 10^{5}$ P1 for 0.5×10^{6} or 0.00005 A1 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^{3}$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | | | P1 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | A1 | | | 8 $5(.0) \times 10^{5}$ P1 for 0.5×10^{6} or 0.00005 A1 P1 for 0.5×10^{6} or 0.00005 P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^{3}$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 7 | $\frac{5}{2}$ OE | P1 | for $\sqrt{8} = 2^{\frac{3}{2}}$ or $4 \times 8 = 2^{2n}$ | | P1 for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | | | A1 | | | 9 $\frac{8}{27}$ for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 8 | $5(.0) \times 10^5$ | P1 | for 0.5×10^6 or 0.00005 | | for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{2}$ or $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ P1 for two steps, e.g. $\left(\frac{2}{3}\right)^{3}$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | | | A1 | | | P1 for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | 9 | 8 27 | P1 | for first step, e.g. $\left(\frac{3}{2}\right)^{-3}$ or $\left(\frac{4}{9}\right)^{\frac{3}{2}}$ or | | for two steps, e.g. $\left(\frac{2}{3}\right)$ or $\left(\frac{64}{729}\right)^2$ | | | | $\left(\frac{729}{64}\right)^{\frac{-1}{2}}$ | | A1 | | | P1 | for two steps, e.g. $\left(\frac{2}{3}\right)^3$ or $\left(\frac{64}{729}\right)^{\frac{1}{2}}$ | | | | | A1 | | | 10 | Proof | P1 | for $\sqrt{27} \times (\sqrt{5} + \sqrt{45}) - \sqrt{3} \times \sqrt{5}$ OE or | |----|-------|----|--| | | | | for $\frac{\left(\sqrt{5} \times \sqrt{3}\right)}{\sqrt{27}\left(\sqrt{5} + \sqrt{45}\right)}$ | | | | P1 | for $\sqrt{27} = 3\sqrt{3}$ or $\sqrt{45} = 3\sqrt{5}$ OE | | | | P1 | for $\frac{12\sqrt{3}\sqrt{5} - \sqrt{3}\sqrt{5}}{12\sqrt{3}\sqrt{5}}$ (could have $\sqrt{15}$ | | | | | × instead of $\sqrt{3}$ $\sqrt{5}$) or for complete method to show shaded area cancels | | | | | down to $\frac{1}{12}$ | | | | C1 | complete proof to $\frac{11}{12}$ | | Calculator | | | | |------------|------------------------------------|----|---| | 11 | 0.12 and 0.6 | P1 | for any two decimals whose product is 0.072 | | | | A1 | | | 12a | SF, SM, SV, HF, HM, HV, AF, AM, AV | B1 | | | 12b | 11 | P1 | for 5×4 or lists all 20 | | | | A1 | | | 13a | 1.969 | B1 | for 1.97 or 1.9691 | | | | B1 | | | 13b | 1.5 | B1 | accept $\frac{3}{2}$ or $1\frac{1}{2}$ | | 14 | reciprocal of 2.7 | P1 | for two of: $1 \div 2.7 = 0.370$; 0.371; $0.72 \times 0.72 \times 0.72 = 0.373$) | | | | C1 | for the reciprocal of 2.7 with 0.370, 0.371 and 0.373 | | 15a | $2^6 \times 3^5$ | B1 | | | 15b | $2^7 \times 3^8 \times 7 \times 5$ | P1 | for either 2 ⁷ or 3 ⁸ in a product of factors | | 16 | £26.03 | P1 | attempt to find LCM by, e.g., lists of multiples, or summing of 105s and summing of 84s, with at least three numbers in each list | | | | A1 | identify 420 (as LCM) | | | | P1 | for "420" ÷ 105 or 4 or "420" ÷ 84 or 5 | | | | P1 | "4"× 1.32 (= 5.28) + "5" × 4.15 (= 20.75) | | | | A1 | | | 17a | 3.48×10^{-2} | B1 | | | 17b | 29 000 000 000 | B1 | | | Non-Calculator | | | | |----------------|-----------------------------|------|-------| | Question | Торіс | Step | Marks | | 1 | Place value | 5th | 3 | | 2a | Use positive integer powers | 7th | 1 | | 2b | Use positive integer powers | 8th | 1 | | 2c | Use positive integer powers | 7th | 2 | | 3 | Calculate with roots | 7th | 3 | | 4 | Use positive integer powers | 5th | 2 | | 5a | Place value | 6th | 1 | | 5b | Place value | 6th | 1 | | 5c | Place value | 6th | 2 | | 6 | HCF and LCM | 7th | 3 | | 7 | Fractional indices | 10th | 2 | | 8 | Standard form | 9th | 2 | | 9 | Fractional indices | 11th | 3 | | 10 | Calculate with surds | 11th | 4 | | Calculator | | | | | |------------|--|------|---|--| | 11 | Apply the four operations to decimals | 5th | 2 | | | 12a | Apply systematic listing strategies | 5th | 1 | | | 12b | Use of product rule for counting | 10th | 2 | | | 13a | Calculate with roots, and with integer indices & Place value | 6th | 2 | | | 13b | Calculate with roots | 6th | 1 | | | 14 | Reciprocals, squares, cubes | 7th | 2 | | | 15a | HCF | 7th | 1 | | | 15b | LCM | 7th | 2 | | | 16 | Apply the four operations | 6th | 5 | | | 17a | Standard form | 8th | 1 | | | 17b | Standard form | 8th | 1 | | ## Marks to Steps conversion table The table below converts marks to a step on the Pearson progression scale. For more information on the progression service please see the <u>progression website</u>. | Mark boundary | Step | |---------------|-----------| | 0 | U | | 1–2 | 3rd Step | | 3–7 | 4th Step | | 8–14 | 5th Step | | 15–22 | 6th Step | | 23–29 | 7th Step | | 30–35 | 8th Step | | 36–40 | 9th Step | | 41–44 | 10th Step | | 45–50 | 11th Step |