Mark scheme End of Unit assessments are 30 marks, so you should allow 35 minutes. The following marks are awarded for each question. | oe | Or equivalent answer mark | |-----|---| | ft | Incorrect values may be followed through from one step to the next provided that the correct method is seen in each step and the only errors are arithmetic. This is shown in mark schemes by putting a number in inverted commas | | cao | Correct answer only | | Р | Process mark to show correct process for problem solving. Any other process of a similar standard to achieve an accurate result is acceptable to achieve this mark | | С | Communication mark | | Α | Accuracy mark – unless the question specifies that working must be shown then the sight of the correct answer implies the award of full marks (unless the answer clearly comes from incorrect working) | | М | Method mark – the correct method must be shown but there may be an arithmetic error; the sight of the value given in brackets implies the award of the method mark | | В | Unconditional accuracy mark | | Non- | Non-calculator | | | |------|----------------|-------|--| | Q | Answer | Mark | Comment | | 1a | | B1 | cao | | 1b | В | B1 | cao | | 2a | < | B1 | cao | | 2b | = | B1 | cao | | 3 | | M1 A1 | Draw a square or rectangle and 4 triangles | | 4 | 96 | M1 | 4 × 4 × 6 oe | |----|--|------|--| | | | A1 | | | 5 | e.g. $10 \times 12 = 120$ (area of entire rectangle) | C1 | for one correct area shown | | | $\frac{1}{2} \times 5 \times 10 = 25$ (area of missing triangle) | C1 | | | | 120 - 25 = 95 cm ² | | | | 6 | | B1 | for 2 or 3 lines correct and none | | | | | incorrect | | | | | or correct drawing with extra lines drawn | | | | B1 | for accurate drawing | 7a | 132 | M1 | area of L shape | | | | | e.g. $(9 \times 2) + (3 \times 5)$ | | | | | e.g. $(7 \times 3) + (2 \times 6) = 33$ | | | | | or volume of one cuboid | | | | | e.g. 7 × 4 × 3 or 84 | | | | M1 | e.g. 6 × 2 × 4 or 48
ft '33' × 4 | | | | IVII | or 84 + 48 | | | | A1 | cao | | 7b | 194 | M1 | method to find surface area of at | | | | | least 4 faces | | | | M1 | method to find surface area of at least 6 faces | | | | M1 | method to find total surface area of all 8 faces | | | | | i.e. 33 + 33 + 12 + 20 + 24 + 8 + 36
+ 28 | | | | A1 | cao | | Calculator | | | | | |------------|--------|------|---------------------|--| | Q | Answer | Mark | Comment | | | 8 | 75 | B1 | | | | 9a | 30.24 | M1 | (5.6 × 10.8) ÷ 2 oe | | | | | A1 | cao | | | 9b | e.g. the two triangles have the same base and the same height so they must have the same area e.g. area of parallelogram = 10.8×5.6 area of A = $\frac{1}{2} \times 10.8 \times 5.6$ | C1 | | |-----|---|----------|--| | | Therefore area of B = $\frac{1}{2}$ × 10.8 × 5.6 = area of A | | | | 10 | 343 | B1 | | | 11 | 46.512
Accept 46.51 or 46.5 | M1 | (8.26 + 5.42) ÷ 2 × 6.8 oe
e.g. (8.26 × 6.8) - 6.8 × (8.26 -
5.42) ÷ 2 or 56.168 - 9.656
e.g. (5.42 × 6.8) + 6.8 × (8.26 -
5.42) ÷ 2 or 36.856 + 9.656 | | | | A1 | | | 12a | 9.61 | B1 | 57.66 ÷ 6 | | 12b | 3.1 | B1 | ft √'9.61' | | 13 | 3.84 | M1
A1 | $(0.8 \times 0.8) \times 6$ | | Non-calcu | Non-calculator | | | | |-----------|--|-----|-------|--| | Question | Question Topic | | Marks | | | 1a | Draw plans and elevations of 3D shapes. | 6th | 1 | | | 1b | Draw plans and elevations of 3D shapes | 6th | 1 | | | 2a | Convert between metric units of length. | 4th | 1 | | | 2b | Convert between metric units of length. | 4th | 1 | | | 3 | Recognise and sketch the nets of prisms including cuboids, triangular prisms, right prisms, cylinders. | 4th | 2 | | | 4 | Calculate the surface areas of simple cuboids (without use of nets). | 4th | 2 | | | 5 | Draw 3D shapes on isometric paper given their plans and elevations. | 5th | 2 | | | 6 | Analyse 3D shapes through cross-sections, plans and elevations | 6th | 2 | | | 7a | Calculate volumes of shapes made from cuboids, for lengths given as whole numbers | 7th | 3 | | | 7b | Calculate surface areas of shapes made from cuboids, for lengths given as whole numbers | 7th | 4 | | | Calculator | | | | | |------------|---|------|-------|--| | Question | Topic | Step | Marks | | | 8 | Solve problems involving converting between imperial and metric units | 5th | 1 | | | 9a | Use a formula to calculate the areas of triangles | 5th | 2 | |-----|---|-----|---| | 9b | Use a formula to calculate the areas of parallelograms | 5th | 1 | | 10 | Calculate the volume of cuboids | 6th | 1 | | 11 | Use a formula to calculate the areas of trapezia | 6th | 2 | | 12a | Calculate the surface areas of simple cuboids (without use of nets) | 4th | 1 | | 12b | Calculate the surface areas of simple cuboids (without use of nets) | 4th | 1 | | 13 | Calculate the surface areas of simple cuboids (without use of nets) | 6th | 2 | ## Marks to Steps conversion table The table below converts marks to a step on the Pearson progression scale. For more information on Progress & Assess please see the <u>progression website</u>. | Mark boundary | Step | |---------------|------| | 0 | U | | 1–2 | 2nd | | 3–5 | 3rd | | 6–11 | 4th | | 12–16 | 5th | | 17–22 | 6th | | 23–30 | 7th |